Coordination of the ($\left.\mu-\eta^{2}-\mathrm{As}_{2}\right)$ ligand to Group 6 transition metal carbonyl fragments and crystal structures of $\mathrm{Cp}_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{4} \mathrm{As}_{2}\left[\mathrm{M}(\mathrm{CO})_{5}\right]_{2}$

$$
(\mathrm{M}=\mathrm{Cr}, \mathrm{~W})
$$

Lai Yoong Goh *, Wei Chen *, Richard C.S. Wong
Department of Chemistry, University of Malaya, 59100 Kuala Lumpur, Malaysia

Received 7 December 1994; in revised form 22 February 1995

Abstract

$\left[\mathrm{CpCr}(\mathrm{CO})_{2}\right]_{2}\left(\mu-\eta^{2}-\mathrm{As}_{2}\right)(1)$ reacts with 2 mol equiv. of $\mathrm{M}(\mathrm{CO})_{5}(\mathrm{THF})$ to give the adducts $\left[\mathrm{CpCr}(\mathrm{CO})_{2}\right]_{2}\left(\mu-\eta^{2}-\mathrm{As}_{2}\right)\left[\mathrm{M}(\mathrm{CO})_{5}\right]_{2}$ ($\mathbf{2 A}, \mathbf{M}=\mathbf{C r} ; \mathbf{2 B}, \mathrm{M}=\mathrm{W}$) in $55-60 \%$ isolated yields. The adducts are isostructural, possessing a crystallographic C_{2} axis through the midpoints of the As-As and $\mathrm{Cr}-\mathrm{Cr}$ bonds. Bonding parameters are indicative of a small degree of steric effects imposed by the coordinated $\mathrm{M}(\mathrm{CO})_{5}$ fragments.

Keywords: Arsenic; Chromium; Tungsten; Carbonyl; Adduct; Cyclopentadienyl

1. Introduction

There is continuing interest in transition metal complexes containing bare main group elements. Those involving arsenic have been included in several recent reviews [1]. In our reaction of $\left[\mathrm{CpCr}(\mathrm{CO})_{3}\right]_{2}$ with elemental arsenic, we have previously isolated $[\mathrm{CpCr}-$ $\left.(\mathrm{CO})_{2}\right]_{2} \mathrm{As}_{2}$ (1) and $\mathrm{CpCr}(\mathrm{CO})_{2} \mathrm{As}_{3}$ as the primary products [2]. In the course of this study, we attempted an investigation into the donor capability of the coordinated As_{2} ligand towards the transition metal carbonyl fragments $\left[\mathrm{M}(\mathrm{CO})_{5}\right](\mathrm{M}=\mathrm{Cr}, \mathrm{W})$, for purposes of comparison with the Mo analogue 3A [3] of 2A and its parent 3 [4], as well as with the ($\mu-\eta^{2}-\mathrm{P}_{2}$) analogue [5] of 2 A .

2. Results and discussion

The reaction of 1 with 2 mol equiv. of $\mathrm{M}(\mathrm{CO})_{5}$ (THF) [$\mathrm{M}=\mathrm{Cr}, \mathrm{W}$] at ambient temperature led to the isolation of the complexes $\left[\mathrm{CpCr}(\mathrm{CO})_{2}\right]_{2} \mathrm{As}_{2}\left[\mathrm{M}(\mathrm{CO})_{5}\right]_{2}(2 \mathrm{~A}, \mathrm{M}$ $=\mathrm{Cr}, \mathbf{2 B}, \mathrm{M}=\mathrm{W}$) in 59.6 and 55.2% yields, respectively, as shown in Eq. 1.

[^0]

Fig. 1.
moiety to the metal fragment "electron sink", thereby decreasing electron-pair repulsion between the As atoms [6]. In view of this, the coordination of the As_{2} ligand to two electron-attracting $\mathrm{M}(\mathrm{CO})_{5}$ groups would be expected to cause a further reduction in the As-As distance. However, this effect was not observed here, or for 3A [3] or in the ($\mu-\eta^{2}-\mathrm{P}_{2}$) analogue of 2A [5].

Steric hindrance due to the two $\mathrm{M}(\mathrm{CO})_{5}$ groups is obvious in all the adducts 2A, 2B and 3A. Alleviation of this hindrance by increasing the dihedral angle MAsAs \mathbf{M}^{\prime} is reflected in increases of the $\mathrm{Mo} / \mathrm{Cr} 2-$ $\mathrm{Mo}^{\prime} / \mathrm{Cr}^{\prime}{ }^{\prime}$ distance and the $\mathrm{Mo} / \mathrm{Cr} 2-\mathrm{As}-\mathrm{Mo}^{\prime} / \mathrm{Cr}^{\prime}{ }^{\prime}$ angle, accompanied by decreases in the $\mathrm{As}^{\prime}-\mathrm{Mo} / \mathrm{Cr} 2-$ $\mathrm{Mo}^{\prime} / \mathrm{Cr}^{\prime}{ }^{\prime}$ and $\mathrm{As}-\mathrm{Mo} / \mathrm{Cr} 2-\mathrm{Mo}^{\prime} / \mathrm{Cr} 2^{\prime}$ angles (Tables 1 and 2). While both the Mo-As and Mo-As' distances are slightly shortened in 3A (2.53 and $2.65 \AA$ [3]) compared with those in the parent complex 3 (2.57 and $2.67 \AA$ [5], respectively), in the case of 1 the $\mathrm{Cr}-\mathrm{As}$ distances in its adducts are shortened (from 2.45 to 2.43 \AA A), whereas the $\mathrm{Cr}-\mathrm{As}$ ' distance are slightly lengthened (from 2.60 to $2.61 \AA$), making the AsAs' Cr triangle even more distorted. Likewise, as shown in Table 1, the $\mathrm{Cr}-\mathrm{CO}$ distances have been increased from 1.86 to 1.87 \AA and from 1.83 to $1.86 \AA$ in 2 A and $1.85 \AA$ in 2 B .

3. Experimental

All general procedures and spectral measurements were as described previously [5]. Complex 1 was synthesized from $\left[\mathrm{CpCr}(\mathrm{CO})_{3}\right]_{2}[2]$.

3.1. X-ray structural analysis

Data collection and processing parameters for 2A and 2B are summarized in Table 3. The structures were

Table 1
Comparison of selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ of the $\mathrm{Cr}_{2} \mathrm{As}_{2}$ core of 2 A and 2 B with those of 1

	1	2A	2R
As-As'	2.276(1)	2.284(1)	2.285 (2)
$\mathrm{Cr}-\mathrm{Cr}^{\prime}$	3.026(1)	3.070(2)	3.071(3)
As-Cr'	$2.597(1)$	2.610(1)	$2.606(2)$
As-Cr	$2.452(1)$	2.431(1)	2.426(2)
$\mathrm{Cr}-\mathrm{C} 6$	1.859(6)	1.871(8)	1.87(1)
$\mathrm{Cr}-\mathrm{C} 7$	1.829(7)	1.859(7)	1.85(1)
$\mathrm{As}^{\prime}-\mathrm{As}-\mathrm{Cr}$	60.0(1)	59.14(3)	$59.03(4)$
$\mathrm{As}^{\prime}-\mathrm{As}-\mathrm{Cr}^{\prime}$	66.5(1)	67.13(3)	67.12(4)
$\mathrm{Cr}^{\prime}-\mathrm{As}-\mathrm{Cr}$	73.6 (1)	74.94(5)	75.13(6)
As- $\mathrm{Cr}-\mathrm{As}^{\prime}$	53.5(1)	53.73(3)	53.86(5)
$\mathrm{Cr}^{\prime}-\mathrm{Cr}-\mathrm{As}^{\prime}$	51.0(1)	49.88(3)	49.76(4)
$\mathrm{As}^{\prime}-\mathrm{Cr}-\mathrm{C} 7$	71.8(2)	71.4(2)	71.5(4)
$\mathrm{As}^{\prime}-\mathrm{Cr}-\mathrm{C} 6$	79.4(2)	81.3(2)	81.4(4)
$\mathrm{Cr}^{\prime}-\mathrm{Cr}-\mathrm{As}$	55.4(1)	55.17(3)	55.11(4)
As-Cr-C7	125.2(2)	125.0(2)	125.3(4)
As-Cr-C6	85.6(2)	86.8(2)	85.9(4)
$\mathrm{Cr}^{\prime}-\mathrm{Cr}-\mathrm{C} 7$	89.3(2)	87.9(2)	88.8(4)
$\mathrm{Cr}^{\prime}-\mathrm{Cr}-\mathrm{C} 6$	128.3(2)	129.1(2)	128.8(4)
C6-Cr-C7	87.8(3)	89.2(3)	89.2(5)

solved by the direct method multan [8]. Non-hydrogen atoms were refined anisotropically by full matrix leastsquares refinement. H atoms were located from the difference Fourier map and were refined isotropically. All computations were performed on a micro VAX II minicomputer using the MolEN package [9]. Residual electron densities were observed near the W atoms in 2B. Atomic coordinates and their equivalent isotropic thermal parameters are given in Tables 4 and 5. Tables of observed and calculated structure factors and anisotropic thermal parameters are available from the authors.

Table 2
Some selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ of $\left[\mathrm{Cp}(\mathrm{CO})_{2} \mathrm{M}\right]_{2} \mathrm{As}_{2}$ $\left[\mathrm{Cr}(\mathrm{CO})_{5}\right]_{2}(\mathbf{2 A}, \mathbf{M}=\mathrm{Cr} ; \mathbf{3 A}, \mathbf{M}=\mathrm{Mo})$ and $\left[\mathrm{Cp}(\mathrm{CO})_{2} \mathrm{Mo}\right]_{2} \mathrm{As}_{2}(\mathbf{3})$

	$\mathbf{2 A}$	$\mathbf{3 A}[3]$	$\mathbf{3}^{\text {a }}[4]$
$\mathrm{As}-\mathrm{As}^{\prime}$	$2.284(1)$	$2.310(3)$	$2.312(3)$
$\mathrm{Cr} 1-\mathrm{As}$	$2.479(1)$	$2.471(3)$	
$\mathrm{Mo} / \mathrm{Cr} 2-\mathrm{Mo}^{\prime} / \mathrm{Cr}^{\prime}$	$3.070(2)$	$3.064(3)$	$3.038(2)$
$\mathrm{Mo} / \mathrm{Cr} 2-\mathrm{As}^{\prime}$	$2.431(1)$	$2.531(3)$	$2.568(2)$
$\mathrm{Mo} / \mathrm{Cr} 2-\mathrm{As}^{\prime}$	$2.610(1)$	$2.645(3)$	$2.670(2)$
$\mathrm{Mo} / \mathrm{Cr} 2-\mathrm{CO}$	$1.859-1.871(8)$	$1.96-1.98(1)$	
$\mathrm{Mo} / \mathrm{Cr} 2-\mathrm{Cp}$	$2.158-2.243(8)$	$2.28-2.237(1)$	
$\mathrm{Cr} 1-\mathrm{CO}$			
$\mathrm{Cr} 1-\mathrm{CO}$	$1.846(8)$	$1.81(1)$	
$\mathrm{Mo} / \mathrm{Cr} 2-\mathrm{As}^{\prime}-\mathrm{As}^{\prime}$	$1.888-1.895(9)$	$1.84-1.88(1)$	
$\mathrm{Mo} / \mathrm{Cr} 2-\mathrm{As}^{\prime}-\mathrm{As}^{\prime}$	$59.13(3)$	$66.1(1)$	$66.1(1)$
$\mathrm{Mo} / \mathrm{Cr} 2-\mathrm{As}^{\prime}-\mathrm{Mo}^{\prime} / \mathrm{Cr}^{\prime}{ }^{\prime}$	$74.94(5)$	-	$61.6(1)$
$\mathrm{As}-\mathrm{Mo} / \mathrm{Cr} 2-\mathrm{As}^{\prime}$	$53.73(3)$	$53.0(1)$	$70.9(1)$
$\mathrm{As}-\mathrm{Mo} / \mathrm{Cr} 2-\mathrm{Mo}^{\prime} / \mathrm{Cr}^{\prime} \mathbf{C l}^{\prime}$	$55.17(3)$	$55.5(1)$	$56.3(1)$
$\mathrm{As}-\mathrm{Mo} / \mathrm{Cr} 2-\mathrm{Mo}^{\prime} / \mathrm{Cr}^{\prime}$	$49.88(3)$		$53.0(0)$
$\mathrm{Cr} 1-\mathrm{As}-\mathrm{Mo} / \mathrm{Cr}^{\prime}$	$146.75(4)$	$147.2(1)$	
$\mathrm{Cr} 1-\mathrm{As}-\mathrm{As}^{\prime}$	$135.57(3)$	$135.4(1)$	

[^1]
3.2. Preparation of $M(C O)_{5}(T H F)$ solutions

Solutions of $\mathrm{M}(\mathrm{CO})_{5}(\mathrm{THF})(\mathrm{M}=\mathrm{Cr}, \mathrm{W})(0.007 \mathrm{M})$ were prepared from $\mathrm{M}(\mathrm{CO})_{6}$ in THF as described by Strohmeier and co-workers [10].

3.3. Isolation of $\left[\mathrm{CpCr}(\mathrm{CO})_{2}\right] \mathrm{As}_{2}\left[\mathrm{Cr}(\mathrm{CO})_{5}\right]_{2}$ (2A)

An orange-yellow solution of $\mathrm{Cr}(\mathrm{CO})_{5}(\mathrm{THF})(41 \mathrm{ml}$, 0.29 mmol) was injected into a deep-purple solution of $\left[\mathrm{CpCr}(\mathrm{CO})_{2}\right]_{2} \mathrm{As}_{2}(70 \mathrm{mg}, 0.14 \mathrm{mmol})$ in THF (5 ml) and the mixture was stirred at ambient temperature. After 1 h , the reaction mixture had turned purplish brown. After 3 h , the product mixture was evacuated to
dryness and the residue was dissolved in toluene (ca. 2 ml). Chromatography on a silica gel column ($1.5 \mathrm{~cm} \times$ 15 cm) prepared in n-hexane gave two fractions: (i) a yellow solution in n-hexanc (10 ml) which, when concentrated to dryness, yielded an uncharacterized yellowish brown non-Cp-containing oily residue (12 mg), probably derived from unreacted $\mathrm{Cr}(\mathrm{CO})_{5}$ THF; (ii) a purplish brown solution in toluene (20 ml) followed by 1:1 toluene-diethylether (20 ml), which on concentration to ca. 2.5 ml and crystallization at $-28^{\circ} \mathrm{C}$ overnight gave a fine, dark, crystalline solid of $2 \mathrm{~A}(53 \mathrm{mg}, 0.060$ $\mathrm{mmol}, 42.7 \%$ yield) followed by a second crop (21 mg , 0.024 mmol, 16.9% yield). Anal. Found: C, 32.75 ; H, 0.92 , As, 16.70; $\mathrm{Cr}, 23.15 . \mathrm{C}_{24} \mathrm{H}_{10} \mathrm{O}_{14} \mathrm{As}_{2} \mathrm{Cr}_{4}$ Calc.: C,

Table 3
Data collection and processing parameters

Parameter	2A		2B	
Molecular formula	$\mathrm{C}_{24} \mathrm{H}_{10} \mathrm{O}_{14} \mathrm{As}_{2} \mathrm{Cr}_{4}$		$\mathrm{C}_{24} \mathrm{H}_{10} \mathrm{O}_{14} \mathrm{As}_{2} \mathrm{Cr}_{2} \mathrm{~W}_{2}$	
$M_{\text {r }}$	880.17		1143.88	
Crystal colour and habit	Black trigonal prism		Black trigonal prism	
Crystal size (mm)	$0.14 \times 0.18 \times 0.22$		$0.1 \times 0.2 \times 0.3$	
Unit cell parameters:				
$a(\AA) \quad \alpha\left({ }^{\circ}\right)$	18.590(2)	90	18.7689(7)	90
$b(\AA) \quad \beta\left({ }^{\circ}\right)$	10.4405(4)	110.088(7)	10.6810(8)	109.726(4)
$c(\mathrm{~A}) \quad \gamma\left({ }^{\circ}\right)$	16.633(2)	90	16.6130(8)	90
$V\left(\AA^{3}\right) \quad Z$	3031.9(8)	4	3135.0(5)	4
$D_{x}\left(\mathrm{mg} \mathrm{m}^{-3}\right)$	1.928		2.423	
Crystal system	Monoclinic		Monoclinic	
Space group	C2/c		C2/c	
Radiation	Mo K α		Mo K α	
No. of reflections for lattice parameters	25		25	
θ range for lattice parameters (${ }^{(}$)	12-14		13-14.5	
Absorption coefficient (cm^{-1})	35.89		102.9	
Temperature (K)	299		300	
Diffractometer type	CAD4		CAD4	
Collection method	$\omega-2 \theta$		$\omega-2 \theta$	
Absorption correction type	*-Scan		ψ-Scan	
Absorption correction ($T_{\text {min }}, T_{\text {max }}$)	82.167, 99.8		58.078, 99.	
No. of reflections measured	5842		3016	
No. of independent reflections	2669		2752	
$\theta_{\text {max }}\left({ }^{\circ}\right.$)	25		25	
No. of observed reflections	1628		1872	
No. of standard reflections (and interval)	3(400)		3(400)	
Criterion for observed	$>3 \sigma($)		$>3 \sigma(1)$	
Variation of standards ($\% \mathrm{~h}^{-1}$)	$2.07 \times 10^{-}$		-9.79×1	
$h_{\text {min }} h_{\text {max }}$	0	22	-22	
$k_{\text {min }} k_{\text {max }}$	0	12	0	12
$l_{\text {min }} l_{\text {max }}$	-19	18	-18	19
R	0.035		0.030	
$w R$	0.038		0.033	
No. of parameters refined	219		219	
No. of reflections used in refinement	1628		1872	
S	1.06		1.015	
Weighting scheme: $w=$	$1 / \sigma(F)^{2}$		$1 / \sigma(F)^{2}$	
$(\Delta / \sigma)_{\max }$	0.01		0.11	
$(\Delta \rho)_{\text {max }}\left(\mathrm{e} \AA^{-3}\right)$	0.385		0.945	

$32.73 ; \mathrm{H}, 1.14 ; \mathrm{As}, 17.05 ; \mathrm{Cr}, 23.64 \%$. NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$): ${ }^{1} \mathrm{H} \delta(\mathrm{Cp}) 4.03 ;{ }^{13} \mathrm{C} \delta(\mathrm{Cp}) 87.28$. IR (Nujol): $\nu(\mathrm{CO})$ $2071 \mathrm{~s}, 2059 \mathrm{~s}, 1979 \mathrm{vs}, 1945 \mathrm{vs}, 1920 \mathrm{vs}, \quad \nu$ (others) $1061 \mathrm{vw}, 873 \mathrm{vw}, 842 \mathrm{w}, 723 \mathrm{w}, 660 \mathrm{~s}, 647 \mathrm{~s}, 594 \mathrm{w}, 554 \mathrm{~s}$, $531 \mathrm{w}, 479 \mathrm{vw}, 450 \mathrm{vw} \mathrm{cm}{ }^{-1}$.

3.4. Isolation of $\left[\mathrm{CpCr}(\mathrm{CO})_{2}\right]_{2} \mathrm{As}_{2}\left[\mathrm{~W}(\mathrm{CO})_{5}\right]_{2}$

(2B)
The procedure as described above was repeated for a mixture of $\left[\mathrm{CpCr}(\mathrm{CO})_{2}\right]_{2} \mathrm{As}_{2}(70 \mathrm{mg}, 0.14 \mathrm{mmol})$ in THF (5 ml) and $\mathrm{W}(\mathrm{CO})_{5}(\mathrm{THF})(41 \mathrm{ml}, 0.29 \mathrm{mmol})$. Similar chromatography of the resultant purplish brown product mixture gave two fractions: (i) a yellow solution in n-hexane (12 ml) which, when concentrated to dryness, yielded an uncharacterized non-Cp-containing oily brown residue (13 mg), probably derived from $\mathrm{W}(\mathrm{CO})_{5}$ (THF); (ii) a brown solution in toluene (25 ml) followed by $1: 1$ toluene-diethylether (20 ml), which was concentrated to ca. 2.5 ml and allowed to crystallize at $-28^{\circ} \mathrm{C}$ overnight, yielding a fine, dark, crystalline solid of 2 B ($66 \mathrm{mg}, 0.058 \mathrm{mmol}, 40.9 \%$ yield), followed by a second crop ($23 \mathrm{mg}, 0.020 \mathrm{mmol}, 14.3 \%$ yield). Anal. Found: C, 25.69 ; H, 1.05; As, 12.93; Cr,

Table 4
Atomic coordinates and equivalent isotropic temperature factors for $\left[\mathrm{CpCr}(\mathrm{CO})_{2}\right]_{2} \mathrm{As}_{2}\left[\mathrm{Cr}(\mathrm{CO})_{5}\right]_{2}{ }^{\text {a }}$

Atom	x	y	z	$B_{\text {eq }}\left(\AA^{2}\right)$
As	$0.43843(3)$	$0.10112(6)$	$0.20323(4)$	$2.23(1)$
Cr1	$0.33550(5)$	$-0.0610(1)$	$0.14970(6)$	$2.95(2)$
Cr2	$0.51876(5)$	$0.25854(9)$	$0.16704(5)$	$2.45(2)$
O1	$0.2211(3)$	$0.0811(6)$	$0.2091(5)$	$9.9(2)$
O2	$0.218(3)$	$-0.2572(6)$	$0.0797(3)$	$7.3(2)$
O3	$0.2824(4)$	$0.0794(7)$	$-0.0204(4)$	$8.2(2)$
O4	$0.3895(4)$	$-0.2086(6)$	$0.3167(4)$	$8.3(2)$
O5	$0.4406(3)$	$-0.2291(6)$	$0.0915(4)$	$7.2(2)$
O6	$0.5738(3)$	$0.0434(5)$	$0.0821(3)$	$5.3(1)$
O7	$0.6820(3)$	$0.3227(5)$	$0.2710(3)$	$5.1(1)$
Cp1	$0.5190(4)$	$0.4610(6)$	$0.1298(4)$	$4.2(2)$
C1	$0.2649(4)$	$0.0314(7)$	$0.1869(5)$	$5.4(2)$
Cp2	$0.4487(4)$	$0.4386(7)$	$0.1397(4)$	$4.4(2)$
C2	$0.2595(4)$	$-0.1817(8)$	$0.1060(4)$	$4.4(2)$
Cp3	$0.4100(4)$	$0.3442(7)$	$0.0810(4)$	$4.4(2)$
C3	$0.3024(4)$	$0.0264(8)$	$0.0438(5)$	$4.9(2)$
C4	$0.3690(4)$	$-0.1512(7)$	$0.2544(5)$	$4.4(2)$
Cp4	$0.4570(4)$	$0.3092(7)$	$0.0341(4)$	$4.4(2)$
C5	$0.4025(4)$	$-0.1640(7)$	$0.1133(4)$	$4.1(2)$
Cp5	$0.5248(4)$	$0.3799(7)$	$0.0645(4)$	$4.1(2)$
C6	$0.5537(3)$	$0.1239(6)$	$0.1158(4)$	$3.3(1)$
C7	$0.6197(3)$	$0.2952(6)$	$0.2331(4)$	$3.1(1)$
H1	$0.559(2)$	$0.516(4)$	$0.163(3)$	$1(1)$
H2	$0.433(3)$	$0.479(5)$	$0.183(3)$	$3(1)$
H3	$0.361(3)$	$0.307(5)$	$0.073(3)$	$3(1)$
H4	$0.442(3)$	$0.248(5)$	$-0.010(3)$	$4(1)$
H5	$0.561(4)$	$0.368(6)$	$0.046(4)$	$6(2)$

[^2]Table 5
Atomic coordinates and equivalent isotropic temperature factors for $\left[\mathrm{CpCr}(\mathrm{CO})_{2}\right]_{2} \mathrm{As}_{2}\left[\mathrm{~W}(\mathrm{CO})_{5}\right]_{2}{ }^{\mathrm{a}}$

Atom	x	y	z	$B_{\text {eq }}\left(\AA^{2}\right)$
W	0.33372(2)	-0.05671(4)	0.14990 (2)	2.898(7)
As	$0.43918(4)$	$0.11182(8)$	0.20348 (5)	2.37(2)
Cr^{\prime}	$0.48136(7)$	0.2650(1)	$0.33318(7)$	2.50(3)
O1	0.2134(4)	0.0886(9)	0.2099(7)	10.7(3)
O2	0.2075(4)	-0.2572(9)	0.0787(5)	7.7(2)
O3	0.2824(5)	0.082(1)	-0.0300(5)	9.4(3)
O4	0.3863(6)	-0.1978(9)	0.3270(5)	8.9(3)
O5	0.4444(5)	-0.233(1)	0.0945(6)	8.7(3)
O6'	0.4293(4)	0.0547(7)	0.4198(4)	5.2(2)
O7'	$0.3188(3)$	0.3232(8)	$0.2314(4)$	$5.3(2)$
C1	0.2586(5)	$0.038(1)$	0.1879(8)	6.0 (3)
C2	0.2548(5)	-0.184(1)	0.1059(6)	4.7(2)
C3	$0.3006(5)$	0.030(1)	0.0341(7)	5.0(3)
C4	0.3684(5)	-0.143(1)	$0.2641(6)$	4.9(3)
C5	0.4056(5)	-0.167(1)	$0.1140(7)$	$5.0(3)$
C6'	0.4487(5)	0.1318(9)	0.3854(5)	3.4(2)
Cl^{\prime}	0.3815(5)	0.2986(9)	$0.2694(5)$	3.3 (2)
Cpl^{\prime}	0.4819(6)	0.4628(9)	0.3695(6)	$4.5(2)$
$\mathrm{Cp} 2^{\prime}$	0.5510(5)	$0.439(1)$	$0.3601(6)$	4.5(2)
Cp^{\prime}	0.5894(5)	0.349(1)	0.4179(6)	4.5(2)
Cp4 ${ }^{\prime}$	0.5431(6)	0.315(1)	0.4660(6)	4.9(3)
CpS^{\prime}	0.4758(5)	0.383(1)	0.4362(6)	4.7(2)
H1'	0.441(4)	$0.509(8)$	$0.333(5)$	4(2)*
H2	0.567(4)	$0.469(8)$	0.319(5)	5(2)*
H3'	0.634(5)	$0.309(9)$	$0.432(5)$	6(3) *
H4'	0.560(3)	$0.262(7)$	$0.508(4)$	2(2) *
H5'	0.431(5)	0.39 (1)	0.451(5)	6(2) *

${ }^{\text {a }}$ Atoms with asterisks were refined isotropically. Anisotropically refined atoms are given in the form of the isotropic equivalent displacement parameter, defined as $(4 / 3)\left[a^{2} B(1,1)+b^{2} B(2,2)+\right.$ $\left.c^{2} B(3,3)+a b(\cos \gamma) B(1,2)+a c(\cos \beta) B(1,3)+b c(\cos \alpha) B(2,3)\right]$.
9.35; W, 31.72. $\mathrm{C}_{24} \mathrm{H}_{10} \mathrm{O}_{14} \mathrm{As}_{2} \mathrm{Cr}_{2} \mathrm{~W}_{2}$ Calc.: C, 25.17; $\mathrm{H}, 0.87$; As, $13.11 ; \mathrm{Cr}, 9.09$; W, 32.17%. NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$): ${ }^{1} \mathrm{H} \delta(\mathrm{Cp}) 4.01$ and ${ }^{13} \mathrm{C} \delta(\mathrm{Cp}) 87.46$. IR (Nujol): $\nu(\mathrm{CO})$ $2077 \mathrm{~s}, 2066 \mathrm{~s}, 1980 \mathrm{vs}, 1941 \mathrm{vs}, 1907 \mathrm{vs}, \nu$ (others) $873 \mathrm{vw}, 843 \mathrm{w}, 821 \mathrm{vw}, 723 \mathrm{w}, 589 \mathrm{~s}$, 573 s , 554 s , 532 w , $480 \mathrm{w} \mathrm{cm}^{-1}$.

References

[1] (a) K.H. Whitmire, J. Coord. Chem. B, 17 (1988) 95; (b) O.J. Scherer, Angew. Chem., Int. Ed. Engl., 29 (1990) 1104; (c) A.-J. Di Maio and A.L. Rheingold, Chem. Rev., 90 (1990) 169; (d) M. Scheer and E. Hermann, Z. Chem., 30 (1990) 41.
[2] L.Y. Goh, R.C.S. Wong, W.-H. Yip and T.C.W. Mak, Organometallics, 10 (1991) 875.
[3] G. Huttner, B. Sigwarth, O. Scheidsteger, L. Zsolnai and O. Orama, Organometallics, 4 (1985) 326.
[4] A.L. Rheingold and P.J. Sullivan, Organometallics, 1 (1982) 1547.
[5] L.Y. Goh, R.C.S. Wong and T.C.W. Mak, J. Organomet. Chem., 364 (1989) 363; J. Organomer. Chem., 373 (1989) 71.
[6] A.S. Foust, M.S. Foster and L.F. Dahl, J. Am. Chem. Soc., 91 (1969) 5633.
[7] L.R. Maxwell, S.B. Hendricks and V.M. Mosley, J. Chem. Phys., 3 (1935) 699.
[8] P. Main, S.J. Fiske, S.E. Hull, L. Lessinger, G. Germain, J.P. Declercq and M.M. Woolfson, multan 80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-Ray Diffraction Data, University of York and University of Louvain.
[9] MolEN, an Interactive Structure Solution Procedure, Delft Instruments, Delft, 1990.
[10] W. Strohmeier and H. Gerlach, Chem. Ber., 94 (1961) 398; W. Strohmeier, J.F. Guttenberg and G. Popp, Chem. Ber., 98 (1965) 2248.

[^0]: * Corresponding authors.

 0022-328X $/ 95 / \$ 09.50$ © 1995 Elsevier Science S.A. All rights reserved SSDI 0022-328X(95)05501-0

[^1]: ${ }^{\text {a }}$ Average for two crystallographically independent molecules.

[^2]: ${ }^{\text {a }}$ Atoms with asterisks were refined isotropically. Anisotropically refined atoms are given in the form of the isotropic equivalent displacement parameter, defined as $(4 / 3)\left[a^{2} B(1,1)+b^{2} B(2,2)+\right.$ $c^{2} B(3,3)+a b(\cos \gamma B(1,2)+a c(\cos \beta) B(1,3)+b c(\cos \alpha) B(2,3)]$.

